1,270 research outputs found

    Spatially Resolved Stellar Populations of Eight GOODS-South Active Galactic Nuclei at z ~ 1

    Get PDF
    We present a pilot study of the stellar populations of eight active galactic nucleus (AGN) hosts at z ~ 1 and compare with (1) lower redshift samples and (2) a sample of nonactive galaxies of similar redshift. We utilize K' images in the Great Observatories Origins Deep Survey South field obtained with the laser guide star adaptive optics system at Keck Observatory. We combine these K' data with B, V, i, and z imaging from the Advanced Camera for Surveys on Hubble Space Telescope to give multicolor photometry at a matched spatial resolution better than 100 mas in all bands. The hosts harbor AGNs as inferred from their high X-ray luminosities (LX > 10^42 erg s^ā€“1) or mid-IR colors. We find a correlation between the presence of younger stellar populations and the strength of the AGN, as measured with [O III] line luminosity or X-ray (2-10 keV) luminosity. This finding is consistent with similar studies at lower redshift. Of the three Type II galaxies, two are disk galaxies and one is of irregular type, while in the Type I sample there are only one disk-like source and four sources with smooth, elliptical/spheroidal morphologies. In addition, the mid-IR spectral energy distributions of the strong Type II AGNs indicate that they are excited to Luminous InfraRed Galaxy (LIRG) status via galactic starbursting, while the strong Type I AGNs are excited to LIRG status via hot dust surrounding the central AGN. This supports the notion that the obscured nature of Type II AGNs at z ~ 1 is connected with global starbursting and that they may be extincted by kpc-scale dusty features that are by-products of this starbursting

    How Are Red and Blue Quasars Different? The Radio Properties

    Get PDF
    A non-negligible fraction of quasars are red at optical wavelengths, indicating (in the majority of cases) that the accretion disc is obscured by a column of dust which extinguishes the shorter-wavelength blue emission. In this paper, we summarize recent work by our group, where we find fundamental differences in the radio properties of SDSS optically-selected red quasars. We also present new analyses, using a consistent color-selected quasar parent sample matched to four radio surveys (FIRST, VLA Stripe 82, VLA COSMOS 3 GHz, and LoTSS DR1) across a frequency range 144 MHzā€“3 GHz and four orders of magnitude in radio flux. We show that red quasars have enhanced small-scale radio emission (āˆ¼kpc) that peaks around the radio-quiet threshold (defined as the ratio of 1.4 GHz luminosity to 6 Ī¼m luminosity) across the four radio samples. Exploring the potential mechanisms behind this enhancement, we rule out star-formation and propose either small-scale synchrotron jets, frustrated jets, or dusty winds interacting with the interstellar medium; the latter two scenarios would provide a more direct connection between opacity (dust; gas) and the production of the radio emission. In our future study, using new multi-band uGMRT data, we aim to robustly distinguish between these scenarios

    Morphologies of low-redshift AGN host galaxies: what role does AGN luminosity play?

    Full text link
    Mergers of galaxies have been suspected to be a major trigger of AGN activity for many years. However, when compared to carefully matched control samples, AGN host galaxies often show no enhanced signs of interaction. A common explanation for this lack of observed association between AGN and mergers has often been that while mergers are of importance for triggering AGN, they only dominate at the very high luminosity end of the AGN population. In this study, we compare the morphologies of AGN hosts to a carefully matched control sample and particularly study the role of AGN luminosity. We find no enhanced merger rates in AGN hosts and also find no trend for stronger signs of disturbance at higher AGN luminosities. While this study does not cover very high luminosity AGN, we can exclude a strong connection between AGN and mergers over a wide range of AGN luminosities and therefore for a large part of the AGN population.Comment: Proceedings of the conference "Nuclei of Seyfert galaxies and QSOs - Central engine & conditions of star formation" held in Bonn, Germany, 201

    Spatially Resolved Stellar Populations of Eight GOODS-South AGN at z~1

    Full text link
    We present a pilot study of the stellar populations of 8 AGN hosts at z~1 and compare to (1) lower redshift samples and (2) a sample of nonactive galaxies of similar redshift. We utilize K' images in the GOODS South field obtained with the laser guide star adaptive optics (LGSAO) system at Keck Observatory. We combine this K' data with B, V, i, and z imaging from the ACS on HST to give multi-color photometry at a matched spatial resolution better than 100 mas in all bands. The hosts harbor AGN as inferred from their high X-ray luminosities (L_X > 10^42 ergs/s) or mid-IR colors. We find a correlation between the presence of younger stellar populations and the strength of the AGN, as measured with [OIII] line luminosity or X-ray (2-10 keV) luminosity. This finding is consistent with similar studies at lower redshift. Of the three Type II galaxies, two are disk galaxies and one is of irregular type, while in the Type I sample there only one disk-like source and four sources with smooth, elliptical/spheroidal morphologies. In addition, the mid-IR SEDs of the strong Type II AGN indicate that they are excited to LIRG (Luminous InfraRed Galaxy) status via galactic starbursting, while the strong Type I AGN are excited to LIRG status via hot dust surrounding the central AGN. This supports the notion that the obscured nature of Type II AGN at z~1 is connected with global starbursting and that they may be extincted by kpc-scale dusty features that are byproducts of this starbursting.Comment: 56 pages, 39 figures, accepted to A

    Decreased specific star formation rates in AGN host galaxies

    Get PDF
    We investigate the location of an ultra-hard X-ray selected sample of active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) catalogue with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and M*'s from Sloan Digital Sky Survey photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and M* as the Swift/BAT AGN. We find that a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (CO Legacy Database for GALEX Arecibo SDSS Survey, COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high-mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itsel

    WIVERN: a laboratory experiment for testing novel laser-based wavefront sensing techniques

    Get PDF
    WIVERN is a testbed for laboratory experiments in laser-based wavefront sensing. It emulates laser uplink from a 4m telescope with 1.6 arcsec seeing and laser back-scattering from up to 20 km. Currently there are three current wavefront sensing capabilities. The first two are from a wide-field of view (1.0 arcmin) Shack Hartmann wavefront sensor observing a constellation of point sources at infinity (reference targets, star-oriented wavefront sensing), or an image from emulated back-scattering (wide-field correlation wavefront sensing). The third is based on the PPPP concept. Other sub-systems are laser projection replicating a pupil launch, a 7x7 pupil-conjugate deformable mirror (DM), and a wide-field camera for PSF analysis. A 500 Hz rate accumulates sufficient data for statistical and machine-learning analysis over hour timescales. It is a compact design (2.1m2) with mostly commercial dioptric components. The sub-system optical interfaces are identical: a flat focal plane for easy bench reconfiguration. The end-to-end design is diffraction-limited with ā‰¤ 1% pupil distortion for wavelengths Ī»=633ā€“750 nm
    • ā€¦
    corecore